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Abstract This paper introduces the Nino Index Phase Analysis (NIPA) framework for forecasting hydrocli-
matic variables on a seasonal time scale. Antecedent Sea Surface Temperatures (SSTs) are commonly used
in statistical predictive frameworks for seasonal forecasting, however, the typical approach of evaluating all
the years on record in one bin (‘‘phase’’) does not often provide the level of skill required by decision mak-
ers. For many locations around the world, the most influential climate signal on the seasonal time scale is
the El Nino Southern Oscillation (ENSO), and there are various indices used to capture the state of ENSO
and provide this information. NIPA utilizes the state of ENSO to classify the years of record into four phases,
operating under the hypothesis that ENSO itself is affecting the ‘‘mean state’’ of the atmospheric-oceanic
system, and relevant teleconnections depend on and must be selected within these mean states. A case
study focused on spring precipitation over the Lower Colorado River Basin (LCRB) in Texas is chosen to illus-
trate NIPA’s potential. Results show that correlations between wintertime SST fields and spring precipitation
in the LCRB improve from 0.21 to 0.47 for the typical ‘‘one phase’’ and the NIPA ‘‘four-phase’’ approach,
respectively. Even greater improvements are seen across tercile-based skill scores such as the Heidke Hit
Skill Score and Ranked Probability Skill Score; skill is particularly strong for years exhibiting extreme wet or
dry conditions. It also outperforms the North American Multi-Model Ensemble predictions across the LCRB
for the selected seasons. This is encouraging as improved predictability through NIPA may translate to
better decision-making for water managers.

1. Introduction to Season-Ahead Precipitation Prediction

Water is the primary medium through which climate has an impact on people, ecosystems, and economies
[Sadoff and Muller, 2009]. Recently, persistent droughts across parts of the west and southwest U.S. have
presented considerable challenges to decision makers involved in regional water planning and manage-
ment. Such challenges include implementing reductions to interruptible contract holders (agriculture and
industry) and imposing reduction measures in municipalities while simultaneously maintaining fiscal sol-
vency and managing public relations. Reservoir management is rarely simple—many reservoirs in the west-
ern U.S. serve multiple, often competing, purposes, such as drought mitigation and flood prevention, which,
respectively, prioritize high and low reservoir levels.

According to projections by state-of-the-art climate models, it is likely that anthropogenic climate change will
spur an increase in extreme climate events around the world [Allan and Soden, 2008], changing the landscape of
both water supply and demand [Jim�enez Cisneros et al., 2014]. For water managers to properly oversee an
increasingly scarce resource with large economic, environmental, and livelihood implications, it is imperative that
they have sufficient flexibility to adapt, requiring access to the advanced resources and tools necessary to effec-
tively react to current conditions and simultaneously plan for both near and long-term predicted conditions.

Thus, prospects for predicting precipitation and other hydroclimatic variables on time scales of months to
decades is of interest to explore means of buffering impacts induced by climate variability. Both dynamical
and statistical predictive frameworks are commonly applied, each having their own distinctive advantages
and disadvantages with neither proving superior for all seasons or locations [Block et al., 2009].

Regional to local-scale precipitation predictions by atmospheric-oceanic general circulation models
AOGCMs are typically highly parameterized [Neelin et al., 2010]. Even when an optimal combination of
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multiple models, such as the North American Multi-Model Ensemble (NMME) [Kirtman et al., 2013] is utilized,
skill for precipitation over the U.S. is generally modest [Infanti and Kirtman, 2014; Mo and Lettenmaier, 2014;
Becker et al., 2014].

Thus, statistical prediction models (SPMs) that forgo parameterization of complex physical processes in
favor of investigating lagged relationships between regional seasonal precipitation amounts and anteced-
ent atmospheric/oceanic (A/O) conditions warrant attention as a complementary approach [Abbot and
Marohasy, 2012]. SPMs capitalize on teleconnections (climate anomalies related to each other at large spa-
tial and temporal scales) present in the A/O system. They typically utilize anomalies of Sea Surface Tempera-
tures (SSTs), though they can also incorporate a wide variety of other A/O variables (or indices that
represent the time evolution of a particular A/O variable, or combination of variables) as predictors to
directly estimate hydroclimatic variables of interest. As such, SPMs offer an appealing complement to
dynamical models, particularly for locations where dynamical models are currently underperforming. While
a complete physical understanding of the climate system through statistical models may not be possible or
intended [Anderson et al., 1999], investigating hydroclimatic relationships through SPMs can assist in devel-
oping a better mechanistic understanding of the atmosphere by illuminating regional hydroclimatic tele-
connections to global A/O variables, as will be demonstrated here.

For season-ahead SPMs, SST anomalies are well documented as the best performing large-scale precipita-
tion predictor field [Barnston, 1994; Markowski and North, 2003; Quan et al., 2006], based on the mechanistic
premise that the lower atmosphere is forced by large-scale anomalous surface processes [Frankignoul, 1985;
Branković et al., 1994; Lloyd-Hughes and Saunders, 2002; Mo and Lettenmaier, 2014]. Indeed, the most promi-
nent teleconnection pattern shown to affect precipitation patterns in both North America and around the
world is the El Nino Southern Oscillation (ENSO) [Ropelewski and Halpert, 1986, 1987; Quan et al., 2006], with
the Nino 3.4 index commonly used in seasonal prediction [Abbot and Marohasy, 2014; Block and Rajagopa-
lan, 2007; Hartmann et al., 2008].

The state of the large-scale climate system is also influenced by ENSO interactions. Enfield et al. [2001] illus-
trates how interactions between ENSO and the Atlantic Multidecadal Oscillation (AMO) can affect river flows
in the U.S., while Shabbar and Skinner [2004] demonstrate how the interaction of ENSO and the Pacific Deca-
dal Oscillation (PDO) plays a role in North American drought. Gershunov [1998] shows that year-to-year
ENSO effects can be modulated by the low-frequency PDO signal, likely due to the similar spatial patterns
[Wang et al., 2008]. Wang et al. [2010] confirms a cold Pacific-warm Atlantic pattern that can produce signifi-
cant drought conditions across the U.S. using AOGCM simulations, supporting the data-driven findings of
McCabe et al. [2004] that align increased drought frequency in the southwest U.S. with PDO negative phase
and AMO positive phase conditions. Given the nonindependence of these large-scale phenomena, there
are certainly idiosyncrasies in the manner in which they interact—perhaps not surprisingly, ENSO itself
exhibits marked variations in its amplitude, temporal evolution, and spatial expression from event to event.

Interest in the diversity of ENSO events began in earnest with Larkin and Harrison [2005] and Ashok et al.
[2007], into, respectively, the effect of different types of ENSO events on seasonal weather anomalies in the
U.S. and on the 2004 ‘‘El Nino Modoki’’ and its associated hydroclimatic anomalies. Since then, according to
Capotondi et al. [2014], ‘‘Significant research has been conducted to identify, describe, and understand these
El Nino types, spurring debates on whether there are indeed two distinct modes of variability [as suggested
by Ashok et al. [2007]], or whether ENSO can be more aptly described as a diverse continuum [as suggested
by Takahashi et al. [2011]].’’ The current body of knowledge concerning these various ‘‘flavors’’ of ENSO is
thoroughly reviewed by Capotondi et al. [2014], who, in conclusion, pose a set of four questions to guide
continued research into the understanding of ENSO diversity and the resulting tropical and extratropical tel-
econnections. This paper provides insight into the second of these questions—What are the sources and
limits of predictability both tropical and extratropical, associated with the differences in ENSO events?

The skill of SPMs varies from season to season and location to location. They have been found to underper-
form compared to multimodel ensembles [Block and Goddard, 2012], but have also shown success when tai-
lored to specific regions [Grantz et al., 2005; Regonda et al., 2006], and, like dynamical models, generally
perform better for temperature than precipitation [Barnston, 1994]. In this study, a novel technique not yet
applied in a predictive manner is developed. The methodology is flexible enough to potentially provide sea-
sonal predictions for any hydroclimatic variable for a multitude of locations; however, it is demonstrated
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here solely for precipitation in one Texas river basin, and any statements regarding potential applicability of
the framework are made with this caveat in mind. In this methodology, the state of ENSO is utilized not as a
predictor, but as a physical influence on the ‘‘mean state’’ of the A/O system to aid in uncovering otherwise
overlooked hydroclimatic signals that may be informative in a statistical prediction framework. Historical
years are binned into four phases based on the state (or strength) of ENSO as measured by the Multivariate
ENSO Index (MEI) [Wolter and Timlin, 2011], and phase-specific antecedent SST fields are identified and
employed as predictors in a principal component regression model. Geographical regions of winter SST
anomalies that contribute predictive information toward spring precipitation will be shown to depend
greatly on the state of ENSO, warranting a modeling framework that captures such intraphase variability.

2. Lower Colorado River Basin Case Study

The proposed methods utilize the state of ENSO to aid in precipitation predictor selection, and were initially
developed to assist spring streamflow forecasts in the Lower Colorado River Basin (LCRB) under a NOAA
grant and partnership with the Lower Colorado River Authority (LCRA). As such, motivations and the ensu-
ing discussion will focus on the LCRB as a case study. Future work will focus on application of the methodol-
ogy to a variety of basins and seasons, however, the main focus for this paper will be on introducing and
validating the methodology.

The LCRB (Figure 1) supplies the Highland Lakes Reservoir system located just north of Austin, Texas, and is
managed by the LCRA. Their mandate is to provide flood control, manage hydropower generation, maintain
public recreational areas, and environmental flows, all while serving a wide range of customers including
municipalities, power plants, and farmers. Two of the six lakes serve primarily as water supply reservoirs,
with a combined storage capacity in excess of however, until recently, storage levels have hovered closer to
one third of capacity given the persistent drought in Texas since 2008.

The LCRA’s customers hold either firm or interruptible water contracts. On 1 March of each year, prior to the
first wet season (March–July, MAMJ) in the basin, the LCRA issues commitments to their interruptible

Figure 1. Texas and the LCRB, annual total precipitation (mm) contours.
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contract holders. The current decision
support system is rigid; if the reservoir
is below a certain level on the deci-
sion date, specific curtailments will
occur. In three recent consecutive
years (2012–2014), downstream farm-
ers holding interruptible contracts
were cut off, causing significant finan-
cial strains and distress among stake-
holders. The LCRA has shown interest
in utilizing seasonal forecasts to
enhance their decision support sys-
tem, and are considering formally
including the use of seasonal fore-
casts in their next Water Management
Plan. Skillful forecasts could enable

the LCRA to optimize their management decisions in both the short and long term. This could be especially
useful as water demand increases and supply in the LCRB, known to be under the influence of ENSO
[Gershunov, 1998; Rajagopalan et al., 2000], varies.

SSTs within the Nino 3.4 region (1208W–1658W, 58S–58N) are among the statistically significant regions of
wintertime (NDFJ) SST anomalies to correlate with springtime precipitation in the LCRB (Figure 2), however,
the correlation is modest (0.28–0.32). Regions of statistically significant correlated SSTs change dramatically
when ENSO phase information is taken into account; the data and methodologies used to incorporate this
type of information into a novel forecasting framework and create skillful predictions are presented in the
following sections. Figure 3 provides further justification that the mean precipitation (through composite
analysis) during El Nino years is statistically significantly higher (by the student’s t test, p 5 0.05) than the
mean precipitation during La Nina years. However, the within-phase variance is large for both phases; 7 of
14 El Nino years fall below the all-year mean, while 5 of 17 La Nina years fall above the all-year mean. It is
these types of within-phase variations that the proposed methodology aims to predict.

3. Hydroclimatic Variables and Sources

Hydroclimate observations and model inputs utilized in this study span 1921–2010. Each year is split into two
seasons to match LCRB climatology—winter (NDJF, November and December start in 1920) and spring (MAMJ).

The PRISM precipitation data set [Daly et al., 2008], gridded at 2.5 arc min (1
8 km) with monthly resolution, is

adopted here to represent observations. The precipitation data are averaged across all grids within the
basin and aggregated to seasonal totals. A
gridded data set was selected in lieu of sta-
tion data for two reasons: first, seasonal
forecasts will eventually be used to force a
distributed (gridded) hydrologic model to
produce inflows into the Highland Lakes
reservoirs, thus aligning well spatially. Sec-
ond, a large east-west gradient in total
annual precipitation exists across the basin
(Figure 1) ranging from 850 mm/yr near
the Highland Lakes Reservoir system to
350 mm/yr on the western edge of the
watershed. The gridded data, at a higher
spatial resolution, better captures this
pattern.

To ensure that the seasonal precipitation
signal is spatially homogeneous across the

Figure 2. Correlation map of MAMJ precipitation with NDJF SSTs for 1921–2010,
Nino 3.4 region bounded in black.

Figure 3. Violin plots of MAMJ precipitation by phase.
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basin on the seasonal scale, a principal
component analysis (PCA) was per-
formed on the gridded data. PCA is a
statistical procedure commonly used
to extract dominant modes of variabili-
ty from large, multidimensional data
sets [Wilks, 1995]. The leading mode
explains 69% of the variance in the
data, and the leading principal compo-
nent correlates almost perfectly
(r 5 0.99) with the areal average of pre-
cipitation, justifying the use of spatially
averaged basin data in building a fore-
cast model.

NOAA’s Extended Reconstructed SST Version 3b [Smith et al., 2008] is used for global monthly SST anoma-
lies, gridded at 2.58.

4. Nino Index Phase Analysis

The Nino Index Phase Analysis (NIPA) statistical framework is proposed to predict total LCRB MAMJ precipi-
tation conditioned on prior season A/O variables. This novel framework utilizes information from the mean
state of the A/O system in the tropical Pacific in the months prior to the season of interest to divide the his-
torical record (90 years for LCRB) into four distinct ‘‘mean states,’’ or phases. Though ENSO is the dominant
signal used in precipitation prediction for many global locations, North American seasonal predictability has
been previously associated with different phases of ENSO [Kumar and Hoerling, 2011], and there is much
evidence that localized (in close proximity to the basin of interest) SST anomalies, outside of the tropical
Pacific, can provide skill in seasonal forecasting [Rajagopalan et al., 2000; Camberlin et al., 2001; Markowski
and North, 2003; Phillips and Thorpe, 2006; Block and Rajagopalan, 2007; White et al., 2008; Bazo et al., 2013;
Chen and Georgakakos, 2014]. It will be shown for the LCRB that, conditioned on the phase of ENSO, NIPA
excels at illuminating these types of teleconnections.

4.1. Multivariate ENSO Index
Changes in the ‘‘mean state’’ of the A/O system caused by tropical hydroclimatic anomalies associated with
ENSO are of interest, and so the Multivariate ENSO Index (MEI) is selected to bin the years [Wolter and Timlin,
1993]. The MEI is constructed as the first principle component of six variables associated with ENSO-SST,
SLP, surface air temperature, zonal wind, meridional wind, and cloudiness fraction. A spectra of the MEI illus-
trate power in the frequency expected for ENSO, 4–7 years, indicating that the typical ENSO signal is cap-
tured. Figure 4 shows the annual precipitation record binned into the four phases utilized for this study: La
Nina, Neutral-Negative, Neutral-Positive, and El Nino. Thresholds between bins are selected based on Wolter
and Timlin [2011], using percentile ranks to categorize El Nino or La Nina events into strong (tenth percen-
tile), moderate (twentieth percentile), and weak (thirtieth percentile), with the middle 40% considered neu-
tral. This study utilizes four phases; as such MEI 5 0 divides the positive from negative phases, and the
thirtieth percentile within positive/negative phases is used to delineate El Nino (La Nina) years from neutral-
positive (negative) years. A summary can be seen in Table 1. These divisions produce unique NDJF SST pat-
terns for each phase that are significantly correlated with MAMJ precipitation in the same phase.

4.2. Steps for Modeling Each Nino
Index Phase
Each phase is evaluated individually,
resulting in four unique predictive
models. At the end of February of each
year, the appropriate phase may be
observed based on the MEI, and the
associated MEI phase model is selected
to predict the following spring months.

Figure 4. Historical precipitation binned by phase.

Table 1. MEI Ranges for Phase Bins

Phase MEI Range Number of Years

La Nina 21.80 to 20.84 17
Neutral Negative 20.79 to 0.00 32
Neutral Positive 0.00–1.06 27
El Nino 1.07–2.12 14
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The steps to create models for each phase are outlined below. A separate phase is also evaluated as a baseline
comparison—the ‘‘all-years’’ phase (Figure 2), which includes all the years without binning as is more common
when constructing these types of statistical models.
4.2.1. Identify SST Predictor Regions
Using correlation maps between total seasonal precipitation and preseason gridded SSTs, regions corre-
lated at the 95% significance level for each phase are identified (Figure 5). The authors acknowledge that
this methodology is likely to produce some spurious correlations; even though the SST grid cells are cer-
tainly not entirely independent realizations, it would not be surprising to see ‘‘significant’’ grid points
emerge when correlating a time series with a huge matrix of variables (16,020 grid cells). To address this
issue and increase confidence that the correlations shown are indicative of an underlying physical connec-
tion, Monte Carlo (MC) techniques are employed (detailed in section 4.3).
4.2.2. Principal Component Regression
Using the suite of predictors identified in section 4.2.1, a principal component regression (PCR) prediction
modeling approach is adopted. PCA is conducted on the entire predictor field (all SST grid points that are
not masked), and a subset (n) of the resulting PCs are retained as predictors in a linear regression model
(equation (1)). North’s rule of thumb [North et al., 1982] is utilized to determine the number of PCs to retain;
however, in each phase, only the first PC is selected, explaining between 65% and 78% of the variance in
selected SST grid points.
4.2.3. Cross-Validated Model Hindcasts
To evaluate model performance, it is common to conduct a hindcast (prediction of historical years for which
observations are available for comparison) and apply performance metrics. To eliminate artificial skill and
potential persistence, a cross-validation procedure is utilized [Barnston, 1994]. Thus, for one phase at a time,
the raw data for the year being hindcast are dropped and new PCs and EOFs are generated using the remain-
ing data from other years in that particular phase. A regression coefficient (b) is obtained via equation (1) for
the PC (predictor) retained as prescribed in section 4.2.2, along with an intercept (a) and associated error(e).

Observation5b3PC11a1e (1)

It should be noted that region selection is not cross validated—that is, all the years in a phase are used to
generate the correlation maps in section 4.2.1, which is the selection mechanism for grid points that enter

Figure 5. Correlation maps of MAMJ precipitation with NDJF SSTs for individual phases, clockwise from top left: La Nina, Neutral Negative, Neutral Positive, and El Nino.
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the PCR. The cross-validation proce-
dure generates a new regression slope
coefficient (b) every round; diagnostics
for the La Nina phase are presented in
Table 2, indicating that b is consis-
tently significant. No phase exhibits a

median p value greater than 0.007 for their respective slope or intercept coefficient, indicating significant
regression parameters for each phase. Intercept coefficients (a) were also significant by the same criteria.

The raw data initially dropped are projected onto the appropriate EOF pattern to produce a predictor value
(X), which is utilized by the regression model to produce a hindcast for the given year via equation (2). This
is repeated for all years in each phase.

Hindcast5b � X1a (2)

4.2.4. Create Hindcast Ensembles
To characterize model error, a kernel density estimator is used to create a probability density function (PDF)
based on model residuals (which are slightly non-Gaussian due to the leave-one-out cross-validation proce-
dure). For each year, a hindcast ensemble is generated by randomly sampling 1000 times from the model
residual PDF and adding the samples to the deterministic hindcast value generated by equation (2) on a
phase-by-phase basis. The result is a PDF for each hindcast, or an ‘‘ensemble prediction’’ [Block and Rajago-
palan, 2007]. Distributions for each yearly hindcast may then be compared with the climatological (historical
average) distribution to judge the model skill.
4.2.5. Create Tercile Hindcast Predictions
Tercile predictions, in which three intervals are delineated (below normal, normal, and above normal) based
on the climatological precipitation distribution, are common in seasonal climate forecasts. Frequently,
equally sized categories are selected, as is the case in this study, however, unequal category size is also per-
missible. Figure 6a shows a PDF generated by a kernel density estimator based on the 90 years of LCRB
data. Analytical integration techniques are then used to determine the precipitation values that create
equally sized categories.

Without any forecast information, the probability that any of the three terciles would be observed in a given
year is considered to be about one third. However, the distributions created in section 4.2.4 can be com-
pared to the climatological PDF, and shifts in the probabilities of being in one of the terciles can be com-
puted (Figure 6b). These categorical forecasts are commonly given in terms of [B N A], [6 38 57], is

Table 2. Regression Diagnostics for La Nina Phase

Max Min Median

b 17.0 9.8 14.6
p value 0.0001 0.001 0.0003

Figure 6. (a) Climatological PDF, and (b) an example Forecast PDF with the climatological underlaid in light gray.
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interpreted as 6% chance of below normal, 38% chance of near normal, and 57% chance of above normal
precipitation for the upcoming season.
4.2.6. Evaluate Model Performance
Three metrics are evaluated to gauge the probabilistic model performance as compared to climatology: the
standard Pearson correlation coefficient, the Heidke Skill Score (HSS) [Heidke, 1926], and Ranked Probability
Skill Score (RPSS) [Epstein, 1969]. The skill scores are performance measures interpreted as a percentage
improvement over some ‘‘reference’’ forecast. A standard reference forecast—the climatological forecast—
is adopted here, with equal chances of B, N, or A, [34 33 33]. Values range from 21 to 1, with positive val-
ues indicating a model forecast that is more skillful than the reference forecast. A score of 0 indicates that
the model shows the same skill as the reference forecast (climatology); a score of 1 indicates a perfect
model forecast. For the unfamiliar reader, Wilks [1995] offers a detailed yet approachable explanation of the
mechanics of HSS and RPSS. For this application, it is sufficient for the reader to understand that the HSS is
based on model ‘‘hits,’’ and that a ‘‘near miss’’ (i.e., A forecast, N observed) is penalized the same as a ‘‘far
miss’’ (A forecast, B observed); RPSS penalizes forecasts increasingly as more probability is assigned to event
categories farther from the actual outcome.

4.3. Monte Carlo Test
As briefly mentioned in section 4.2.1, caution must be exercised when correlating a single time series (LCRB
precipitation) with a massive matrix of variables (180 3 89 SST grid cells). The MC method presented here
demonstrates that the regions selected are indeed significant at a high level of confidence. The routine is as
follows:

1. Randomly shuffle only the precipitation data (MEI and SST unchanged).
2. Bin the shuffled precipitation data using the unshuffled MEI (section 4.1).
3. Generate correlation maps and extract significant grid points (SGs) (section 4.2.1).
4. Record number of SGs per phase, record total for all four phases.
5. Run principal component regression (section 4.2.3).
6. Record the hindcast correlation.
7. Repeat 10,000 times.

The results from the MC are most easily interpreted by examining the histograms in Figure 7 (results from
only one phase are displayed, the other phases exhibit similar characteristics). The histograms illustrate the
distribution of hindcast correlations and number of SGs for the randomized data, and the vertical black line

Figure 7. Monte Carlo results for the La Nina phase.
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indicates the actual correlation and number of grid points for the La Nina phase. Looking at only the corre-
lation, it may be difficult to justify that the actual results are significant; however, the number of SGs clearly
indicates that large regions of SST anomalies are statistically significant. Spuriously correlated grid cells may
produce similar hindcast correlations in the PCR scheme—this is the susceptibility of the method—how-
ever, the likelihood of large regions correlating by chance per phase is low. Depending on the phase, the
SGs produced by the LCRB data are more numerous than those produced in 88–97% of the random trials.
Additionally, Figure 8 indicates that on a per trial basis, the total number of SGs summed across all four
phases is greater than the total SGs for the actual data only 97 out of 10,000 times (99% significant), indicat-
ing that if one phase in a random trial shows a large number of SGs, the likelihood that all the other phases
also show a large number of SGs is low. However, the unshuffled data from each of the four phases show
large regions of SGs. These results provide a high degree of confidence that the relationships outlined here
are indeed significant and potentially indicative of an underlying physical process (large regions of anoma-
lous SSTs) driving the correlation, however, the exact physical processes responsible are not explored here.

5. NIPA Framework Performance

First, NIPA performance will be examined through the per-phase correlation coefficient and a comparison
to the ‘‘one-phase’’ or ‘‘all-years’’ model, where the data are not split into phases but all other NIPA steps are
followed. Next, the skill scores (comparison to ‘‘climatological’’ forecast) will be presented. Last, NIPA per-
formance will be compared to that of the North American Multi-Model Ensemble via the RPSS skill score.

5.1. Skill Scores
For each phase, the first PC was consistently the only PC selected as a predictor using North’s rule of thumb,
indicating that in each phase it represents the dominant mode of variability among the predictor field. For
example, in the La Nina phase, PC-1 explains 65% of the variability, and correlates better with precipitation
(r 5 0.72) than any individual SST grid point; PC-2 explains 9% of the variability and does not significantly
correlate (r 5 0.21) with observed precipitation. Correlations between cross-validated model hindcasts and
observations vary by phase (Figure 9).

The hindcast precipitation from all phases, once reassembled (Figure 10a, r 5 0.47), illustrates a stronger
correlation with observed MAMJ seasonal precipitation than a typical one-phase model (Figure 10b,
r 5 0.21), and better captures observed inter-annual variability (Figure 11). As is common with linear models,
hindcast values have a smaller standard deviation than the original time series, generally underestimating
extreme years. The categorical skill scores can provide useful information despite this reduced variance.

The PDFs generated from the hindcast ensembles for each year (section 4.2.4) can be compared with the
climatological distribution, and probabilities of drier or wetter conditions can be computed (Figure 6).

Figure 8. Monte Carlo results for total significant grid points among the four phases for each trial.
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Though the deterministic hindcast may underestimate or overestimate precipitation, ensembles, representing
model uncertainty, can indicate the relative expected shift in precipitation as compared with climatology.

For the 90 reassembled years, skill scores illustrate that utilizing NIPA shows mild improvement over simply
using the reference climatological forecasts (median RPSS 5 0.12, HSS 5 0.28.) However, of primary concern

Figure 9. Scatterplots of model hindcasts and observations for individual phases, clockwise from top left: La Nina, Neutral Negative,
Neutral Positive, and El Nino.

Figure 10. Scatterplots of (a) composite hindcasts from NIPA and (b) hindcasts from a traditional ‘‘one-phase’’ or ‘‘all-years’’ model.
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to planners are skillful forecasts of
extreme years. The median RPSS for the
10 driest (wettest) years is 0.65 (0.81),
indicating very strong performance in the
most extreme years (Table 3); HSS is 0.70
(0.55). Both RPSS and HPSS performance
deteriorates somewhat as the ‘‘extreme’’
categories are enlarged, however, only to
a relatively minimal degree, again indicat-
ing that the prediction model tends to
shift the odds consistently well for both
dry and wet observed conditions. The
near-normal category does not produce
comparably high skill score values, how-
ever, from a planning perspective, this is
less critical than skillfully predicting
extreme conditions.

When applying the traditional approach of including all years in one phase (Figure 10b), the median RPSS
for the 10 driest (wettest) years drops to 0.04 (0.26); overall, RPSS falls below zero. Thus, the NIPA framework
illustrates a marked improvement over climatological forecasts as well as the traditional approach of exam-
ining all years together in one ‘‘phase,’’ especially for dry and wet years.

5.2. North American Multi-Model Ensemble Comparison
The NMME is an experimental multimodel seasonal forecasting system consisting of coupled models from
U.S. modeling centers including NOAA/NCEP, NOAA/GFDL, IRI, NCAR, NASA, and Canada’s CMC. The coupled
models produce a total of 129 ensemble members, and the data are available from 1982 to 2010. For con-
sistency with the NIPA approach, NMME ensembles are compiled from predictions issued at the end of
February, and comprise total MAMJ precipitation over the region encompassing the LCRB. Figure 12 illus-
trates the comparison for 2 years—one where NIPA excels and one where the NMME excels. However,
when looking at the RPSS scores for each method (Table 4), NIPA is clearly superior to NMME overall, with
particularly significant performance improvements over the NMME when considering the 10 driest and 10
wettest years observed between 1982 and 2010.

6. Summary and Discussion

In this paper, the Nino Index Phase Analysis (NIPA) framework for seasonally forecasting hydroclimatic varia-
bles is introduced, and is demonstrated for spring precipitation in the LCRB. In utilizing the MEI to establish
four distinct phases indicative of the ‘‘mean state’’ of the A/O system, correlation maps combined with prin-
cipal component regression can uncover informative regions of antecedent SST anomalies that may other-
wise be overlooked. The maps illustrate clear distinctions among phases in tropical Pacific and North Pacific
SSTs, with several geographic regions expressing opposing signs in some cases (Figure 5). These nonuni-
formities and varying patterns indicate differing predictive SST signals for precipitation in the LCRB within
each MEI phase.

Figure 11. Time series comparing observations to ‘‘one-phase’’ and NIPA
hindcast results.

Table 3. RPSS and HSS Values for Various Bins of Dry, Normal, and Wet Years

Number of Driest/Wettest Years

10 20 30

RPSS HSS RPSS HSS RPSS HSS

Dry 0.65 0.70 0.35 0.33 0.55 0.45
Wet 0.81 0.55 0.80 0.48 0.41 0.40
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Though linear models may be regarded as simple approaches, unable to capture the nonlinear dynamics
driving atmospheric processes, the NIPA framework performs remarkably well overall. The combination of
distinct ENSO phases and PCR isolates and highlights key climate signals and relevant teleconnections; the
MC analysis provides confidence that the signals are not simply spurious correlations. These signals have
the potential to significantly bolster season-ahead prediction skill, especially in extreme years when man-
agement is most difficult for decision makers, demonstrated by the high RPSS and HSS skill scores in the dri-
est and wettest years. For the case study illustrated, NIPA provides good prospects for better capturing
inter-annual variability compared with climatological forecasts, typical one-phase (‘‘All Years’’) forecasts, and
the dynamical NMME.

The LCRB, when viewed through the lens of composite analysis, is understood to be drier during La Nina and
wetter during El Nino—and indeed the mean spring precipitation is statistically significantly lower for the La
Nina years than the El Nino years. However, violin plots of observed precipitation (Figure 3) illustrate that there
is significant variability in total observed precipitation within both phases. This is in agreement with Larkin and
Harrison [2005], who find that across most locations in the U.S., upper quintile precipitation extremes with the
same sign as a composite El Nino average occur in, at best, only half of the El Nino years identified. The NIPA
methodology goes a step beyond using composite analysis to analyze ENSO events; it is intended to diagnose
and predict the within-phase variance that is essentially masked when using compositing techniques.

Figure 5 (top left) indicates that within La Nina events (which are characterized by cooler than average trop-
ical Pacific SSTs), the strength of the La Nina event is a good predictor for spring precipitation in the LCRB;

the SST anomalies within the entire
spatial domain typical of ENSO
(excepting the cold tongue) are highly
positively correlated with spring pre-
cipitation during La Nina events. Posi-
tive correlation implies that ‘‘warmer’’

Figure 12. Comparison of NIPA to NMME ensembles.

Table 4. RPSS Scores for NMME and NIPA, 1982–2010

10 Driest 10 Wettest All

NIPA 0.47 0.62 20.15
NMME 20.32 0.23 20.35

Water Resources Research 10.1002/2015WR017644

ZIMMERMAN ET AL. ENSO STATE FOR PREDICTOR SELECTION 3772



SST anomalies (a weaker La Nina event) accurately predict higher precipitation, whereas ‘‘cooler’’ SST
anomalies (a stronger La Nina event) predict dry conditions; the hindcasts for this phase correlate at
r 5 0.61, and are not driven by any single outlier. This stands in contrast to conventional thought that La
Nina brings dry conditions to Texas. As an alternative to a static composite analyses, this methodology pro-
vides a dynamic way to predict precipitation in the LCRB conditioned on the phase of ENSO.

In light of these findings, the authors would like to propose that ENSO, as the dominant mode of variability
in the A/O system, sets the stage through the large perturbation it causes in convective heating over the
equatorial Pacific [Kushnir et al., 2006], disrupting atmospheric and oceanic circulations in the tropical Pacific
and elsewhere [Chiodi and Harrison, 2013]. NIPA is meant to be utilized as a data-driven tool to help diag-
nose the climate drivers once the stage is set. Though it does not provide exact physical insight into the
complex dynamics at play, it does highlight that intraphase ENSO variability may be large, yet predictable,
for a given location.

The design of the NIPA framework allows it to easily be applied to hydroclimatic variables other than precipita-
tion, such as wind speed, temperature, streamflow, etc., making it potentially appealing for a variety of applica-
tions. The authors acknowledge that forecasting one variable for one season in one location does not guarantee
broad applicability; however, the MC methods implemented here provide a way to determine when signifi-
cantly correlated SST grid cells are likely spurious or plausibly driven by cohesive areas of A/O variability.
Ongoing work will explore the limits of applicability. Further testing and refinement of NIPA will continue to aid
in better understanding its range of predictive capabilities, nuances, and shortcomings, ultimately in order to
provide decision makers with reliable, useable, hydroclimatic forecast information on seasonal time scales.

References
Abbot, J., and J. Marohasy (2012), Application of artificial neural networks to rainfall forecasting in Queensland, Australia, Adv. Atmos. Sci.,

29(4), 717–730.
Abbot, J., and J. Marohasy (2014), Input selection and optimisation for monthly rainfall forecasting in Queensland, Australia, using artificial

neural networks, Atmos. Res., 138, 166–178.
Allan, R., and T. Ansell (2006), A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004,

J. Clim., 19(22), 5816–5842.
Allan, R. P., and B. J. Soden (2008), Atmospheric warming and the amplification of precipitation extremes, Science, 321(5895), 1481–1484.
Anderson, J., H. van den Dool, A. Barnston, W. Chen, W. Stern, and J. Ploshay (1999), Present-day capabilities of numerical and statistical

models for atmospheric extratropical seasonal simulation and prediction, Bull. Am. Meteorol. Soc., 80(7), 1349–1361.
Ashok, K., S. K. Behera, S. A. Rao, H. Weng, and T. Yamagata (2007), El Ni~no Modoki and its possible teleconnection, J. Geophys. Res., 112,

C11007, doi:10.1029/2006JC003798.
Barnston, A. G. (1994), Linear statistical short-term climate predictive skill in the Northern Hemisphere, J. Clim., 7(10), 1513–1564.
Bazo, J., M. D. L. N. Lorenzo, and R. Porfirio da Rocha (2013), Relationship between monthly rainfall in NW Peru and tropical sea surface

temperature, Adv. Meteorol., 2013, 1–9.
Becker, E., H. van den Dool, and Q. Zhang (2014), Predictability and forecast skill in NMME, J. Clim., 27(15), 5891–5906.
Block, P., and L. Goddard (2012), Statistical and dynamical climate predictions to guide water resources in Ethiopia, J. Water Resour. Plann.

Manage., 138(3), 287–298.
Block, P., and B. Rajagopalan (2007), Interannual variability and ensemble forecast of Upper Blue Nile Basin Kiremt season precipitation, J.

Hydrometeorol., 8(3), 327–343.
Block, P. J., F. A. Souza Filho, L. Sun, and H.-H. Kwon (2009), A streamflow forecasting framework using multiple climate and hydrological

models, J. Am. Water Resour. Assoc., 45, 828–843.
Board, T. W. D. (2012), Water for Texas: 2012 state water plan, technical report, Tex. Water Dev. Board, Austin, Tex. [Available at https://

www.twdb.texas.gov/waterplanning/swp/2012/index.asp.]
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